TRANSITIONS WITH $\Delta k \neq 0, \pm 1$ AND DETERMINATION OF A_{0} FOR SYMMETRIC TOP MOLECULES

Received December 17th, 1975

The conditions under which observation of the vibration-rotation transitions with $\Delta k \neq 0, \pm 1$ can be expected in infrared spectra of symmetric top molecules are discussed. Theoretical results are applied to fundamentals and first overtones of molecules of symmetry $C_{3 v}$.

It is well known, that for symmetric top molecules accurate values of A_{0} cannot be determined by the standard methods of analysis of vibration-rotation or pure rotation spectra. The selection rules for the infrared absorption spectra are $\Delta J=0, \pm 1$ and $\Delta k=0$, or $\Delta k= \pm 1$; the selection rules for Δk prevent ${ }^{1,2}$ the accurate determination of A_{0}. However, since k is not a "good quantum number" for the symmetric top molecules, selection rules for Δk are not strict and are valid in the zeroth approximation only. This means that, in addition to the transitions with $\Delta k=0, \pm 1$, transitions with $\Delta k \neq 0,1$ can also be allowed. However, since they are forbidden in zeroth approximation, their intensity is usually too low for detection. In some cases these transitions can become observable and then it is possible to determine A_{0} from the differences between the frequencies of the transitions with $\Delta k=0, \pm 1$ and $\Delta k \neq 0, \pm 1$ terminating on the same upper state energy level. In this way A_{0} was determined for $\mathrm{CH}_{3} \mathrm{I}$ by Maki and Hexter ${ }^{3}$ and Matsuura and coworkers ${ }^{4}$, for $\mathrm{CH}_{3} \mathrm{D}$ by Olson ${ }^{5}$; for $\mathrm{SiH}_{3} \mathrm{D}$ by Lovejoy and Olson ${ }^{6}$; for AsH_{3} by Olson and coworkers ${ }^{7}$; and for PH_{3} by Maki and coworkers ${ }^{8}$.

Since the determination of A_{0} is of principal spectroscopic interest e.g. for determination of the molecular structure, the conditions under which observation of the transitions with $\Delta k \neq 0, \pm 1$ can be expected will be discussed in this paper.

THEORETICAL

It will be supposed throughout this paper that the molecule is in a totally symmetric electronic state, and the lower states for all transitions discussed are the rotational levels of the ground vibrational state.

It was found useful to classify the states according to the quantum number G introduced by Hougen ${ }^{9}$ which is defined as follows:

For all groups containing symmetric top molecules except the groups $D_{\text {nd }}(n$ even), $S_{2 n}$ (n even), (Groups I):

$$
\begin{equation*}
G=G_{\mathrm{y}}-k, \tag{1}
\end{equation*}
$$

$$
\begin{equation*}
G_{v}=(n / 2) \sum_{B} v_{\mathrm{B}}+\sum_{\mathrm{j}} \mathrm{f}_{\mathrm{j}} l_{\mathrm{j}} . \tag{2}
\end{equation*}
$$

For groups $D_{\text {nd }}$ (n even), $S_{2 \mathrm{n}}(n$ even) (Groups II):

$$
\begin{align*}
G & =G_{\mathrm{y}}-k(1+n), \tag{3}\\
G_{\mathrm{v}} & =n \sum_{\mathrm{B}} v_{\mathrm{B}}+\sum_{\mathrm{j}} s_{\mathrm{j}} l_{\mathrm{j}} . \tag{4}
\end{align*}
$$

Notice that in the ground vibrational state $G^{\prime \prime}=-k, G^{\prime \prime}=-k(1+n)$ for groups \mathbf{I} and II, respectively, and also that G classifies the states only with respect to C_{n} (Groups I) or $S_{2 n}$ (Groups II) elements of symmetry. Thus, results obtained by using only the quantum number G for classification of the states give the maximum information obtainable for the groups C_{n} and $S_{2 \mathrm{n}}$ (n even). For other symmetry groups additional restrictions must be imposed, following from the presence of symmetry elements other than $C_{n}, S_{2 n}$. These restrictions can, however, be imposed as the last step.

The infrared vibration-rotation transitions can be divided with the help of G into the following groups: 1) Strictly forbidden are transitions for which $\Delta G \neq t n$ for groups I or $\Delta G \neq n(1+2 t)$ for groups II, where t is an arbitrary integer including zero. 2) Strongly allowed are transitions for which $\Delta G=\operatorname{tn}$ (Groups I) or $\Delta G=$ $=n(1+2 t)$ (Groups II) and $\Delta k=0$, or $\pm 1,3$) Approximately forbidden are transitions for which $\Delta G=t n$ (Groups I) or $\Delta G=n(1+2 t)$ (Groups II) but $\Delta k \neq 0, \pm 1$. These transitions are forbidden in the zeroth approximation but can be allowed in higher approximation. Since transitions 1) will never appear in the further discussion, the term forbidden will be used to mean type (3) transitions.

Only a special kind of forbidden transition is of interest for the purpose of this paper, namely forbidden transitions which terminate on the same upper state energy levels as do other allowed transitions (Fig. 1).
Let the transition $S_{1}^{\prime \prime} \rightarrow S_{1}^{\prime}$ be allowed ($\Delta k=0$ or +1 or -1), and let its observed frequency be v_{a}. If in addition the forbidden transition $S_{2}^{\prime \prime} \rightarrow S_{1}^{\prime}$ can also be observed, then*

$$
\begin{gather*}
\Delta v=v_{\mathrm{f}}-v_{\mathrm{a}}= \\
=\left(A_{0}-B_{0}\right)\left(k_{1}^{\prime \prime 2}-k_{2}^{\prime \prime 2}\right)-D_{0}^{J K} J^{\prime \prime}\left(J^{\prime \prime}+1\right)\left(k_{1}^{\prime \prime 2}-k_{2}^{\prime \prime 2}\right)-D_{0}^{K}\left(k_{1}^{\prime 4}-k_{2}^{\prime 4}\right) . \tag{5}
\end{gather*}
$$

Since accurate values of $B_{0}, D_{0}^{J K}$ are usually known, it is possible from Eq. (5) to determine accurate values of A_{0}, D_{0}^{K} if a sufficient number of the forbidden transitions can be observed.

[^0]In the zeroth approximation (rigid rotor + harmonic oscillator) only one transition (with respect to Δk) is allowed from the ground state to any excited vibrational state. The forbidden transition $S_{2}^{\prime \prime} \rightarrow S_{1}^{\prime}$ then must be induced by perturbation of the state S_{1}^{\prime} through interaction with another upper state S_{2}^{\prime}, for which the transition $S_{2}^{\prime \prime} \rightarrow S_{2}^{\prime}$ is allowed (Fig. 2).* Then also the forbidden transition $S_{1}^{\prime \prime} \rightarrow S_{2}^{\prime}$ is induced.

The first step is to find some relation between Δk values of allowed transitions and Δk value for matrix element of the perturbation. This relation should also reflect condition $k_{1}^{\prime \prime} \neq k_{2}^{\prime \prime}$ necessary for determination of A_{0} (see Fig. 1 and Eq. (5)). We shall try to find this condition using the quantum number G.

Groups I. The following equations must be obeyed ${ }^{9}$:

$$
\begin{align*}
& G_{1}^{\prime}-G_{1}^{\prime \prime}=t_{1} n, \tag{6}\\
& G_{2}^{\prime}-G_{2}^{\prime \prime}=t_{2} n, \tag{7}\\
& G_{1}^{\prime}-G_{2}^{\prime}=t_{3} n, \tag{8}
\end{align*}
$$

where $t_{1}, t_{2}, t_{3}=0, \pm 1, \pm 2, \ldots$ and for a given interaction the values of t_{1}, t_{2} are fixed by the condition that transitions $S_{1}^{\prime \prime} \rightarrow S_{1}^{\prime}, S_{2}^{\prime \prime} \rightarrow S_{2}^{\prime}$ are allowed (See Appendix I).

Fig. 1
Allowed v_{a} and Forbidden v_{f} Transitions Terminating on the Same Upper State Energy Level

Fig. 2
Forbidden Transitions $v_{1 f}, v_{2 f}$ Induced by Interaction W between the States $S_{1}^{\prime}, S_{2}^{\prime}$

* Apparently forbidden transitions $S_{2}^{\prime \prime} \rightarrow S_{1}^{\prime}, S_{1}^{\prime \prime} \rightarrow S_{2}^{\prime}$ can be also induced, if there is a mixing of the wavefunctions of the states $S_{1}^{\prime \prime}, S_{2}^{\prime \prime}$. Author is indebted to Professor Mills for this remark.

Then

$$
\begin{equation*}
k_{1}^{\prime \prime}-k_{2}^{\prime \prime}=G_{2}^{\prime \prime}-G_{1}^{\prime \prime}=\left(t_{1}-t_{2}-t_{3}\right) n . \tag{9}
\end{equation*}
$$

Since values of t_{1}, t_{2} for a given interaction are fixed, $k_{1}^{\prime \prime} \neq k_{2}^{\prime \prime}$ if and only if

$$
\begin{equation*}
t_{3} \neq t_{1}-t_{2} \tag{10}
\end{equation*}
$$

Groups $I I$. The following relations must be obeyed ${ }^{9}$:

$$
\begin{align*}
& G_{1}^{\prime}-G_{1}^{\prime \prime}=n\left(1+2 t_{1}\right), \tag{11}\\
& G_{2}^{\prime}-G_{2}^{\prime \prime}=n\left(1+2 t_{2}\right), \tag{12}\\
& G_{1}^{\prime}-G_{2}^{\prime}=2 t_{3} n . \tag{13}
\end{align*}
$$

Again $t_{1}, t_{2}, t_{3}=0, \pm 1, \pm 2 \ldots$ and t_{1}, t_{2} are fixed by the same condition as for groups I and

$$
\begin{equation*}
k_{1}^{\prime \prime}-k_{2}^{\prime \prime}=\frac{1}{1+n}\left(G_{2}^{\prime \prime}-G_{1}^{\prime \prime}\right)=\frac{2 n}{1+n}\left(t_{1}-t_{2}-t_{3}\right) . \tag{14}
\end{equation*}
$$

Since $k_{1}^{\prime \prime}-k_{2}^{\prime \prime}$ must be an integer $k_{1}^{\prime \prime} \neq k_{2}^{\prime \prime}$ if and only if

$$
\begin{equation*}
t_{3}=t_{1}-t_{2}+t_{4}(1+n), \tag{15}
\end{equation*}
$$

where t_{4} is arbitrary nonzero integer.
Equations $(6-8,10$ or $11-13,15)$ are basic conditions for perturbation which must be obeyed if forbidden transitions $S_{2}^{\prime \prime} \rightarrow S_{1}^{\prime}, S_{1}^{\prime \prime} \rightarrow S_{2}^{\prime}$ become allowed. However these conditions do not say anything about the intensity of the induced transitions. Thus, the next step will be the inspection of the intensities of the induced forbidden transitions $S_{2}^{\prime \prime} \rightarrow S_{1}^{\prime}, S_{1}^{\prime \prime} \rightarrow S_{2}^{\prime}$. The following two quantities will be defined (Fig. 2): $\delta=\left|E_{1}^{\prime}-E_{2}^{\prime}\right|$ where $E_{1}^{\prime}, E_{2}^{\prime}$ are energies of the unperturbed states $S_{1}^{\prime}, S_{2}^{\prime}$ and $W=$ $\left.=\left|\left\langle S_{1}^{\prime}\right| \mathbf{H}\right| S_{2}^{\prime}\right\rangle \mid$. The intensity of a transition is proportional to the square of the transition moment $M\left(M=\mid\left\langle S_{i}^{\prime}\right| \boldsymbol{\mu}\left|S_{1}^{\prime \prime}\right\rangle\right)$. Let the unperturbed moments for the transitions $S_{1}^{\prime \prime} \rightarrow S_{1}^{\prime}, S_{2}^{\prime \prime} \rightarrow S_{2}^{\prime}$ be $M_{12}, M_{2 a}$, respectively, and let the unperturbed moments for the transitions $S_{2}^{\prime \prime} \rightarrow S_{1}^{\prime}, S_{1}^{\prime \prime} \rightarrow S_{2}^{\prime}$ be equal to zero. Then the squares of the transition moments $M_{1 \mathrm{f}}, M_{2 f}$ induced by perturbation are

$$
\begin{equation*}
M_{1 \mathrm{f}}^{2}=\beta M_{2 \mathrm{a}}^{2}, \quad M_{2 \mathrm{f}}^{2}=\beta M_{1 \mathrm{a}}^{2}, \tag{16}
\end{equation*}
$$

where

$$
\begin{equation*}
\beta=\frac{1}{2}\left[1-1 /\left(1+4 W^{2} / \delta^{2}\right)^{1 / 2}\right]^{2} . \tag{17}
\end{equation*}
$$

The ratio $M_{2 \mathrm{a}}^{2} / M_{1 \mathrm{f}}^{2}=M_{1 \mathrm{a}}^{2} / M_{2 f}^{2}$ was calculated for several values of W / δ and results are presented as follows:

$$
\begin{array}{lcllllll}
W / \delta & 30 & 2 & 1 & 0.5 & 0.3 & 0.1 & 0.03 \\
\beta & 0.5 & 0.29 & 0.13 & 0.04 & 0.01 & 0.00019 & 0.0000016
\end{array}
$$

Particularly interesting are results for $W / \delta=30,1,0.03$ since 30 is a typical value of the ratio $\mathbf{H}_{n} / \mathbf{H}_{n+1}$ in the usual rovibrational classification of the magnitudes of the terms of the Hamiltonian ${ }^{10}$. From above calculations it immediately follows that for the observation of forbidden transitions W must necessarily be of the order of δ.

Since \mathbf{H}_{0} is diagonal in all quantum numbers, W is the matrix element of \mathbf{H}_{1} or \mathbf{H}_{2} or still higher order Hamiltonian and since δ must be of the same order, the states $S_{1}^{\prime}, S_{2}^{\prime}$ must be in resonance. Notice also that if $W=\left\langle S_{1}^{\prime}\right| \boldsymbol{H}_{1}\left|S_{2}^{\prime}\right\rangle \approx 30 \mathrm{~cm}^{-1}$ then $v_{1}^{0} \approx \nu_{2}^{0}$ (v^{0} is the vibrational frequency) satisfactory fulfills the condition $W \approx \delta$, while if $W=\left\langle S_{1}^{\prime}\right| \mathbf{H}_{2}\left|S_{2}^{\prime}\right\rangle \approx 1 \mathrm{~cm}^{-1}$ the states $S_{1}^{\prime}, S_{2}^{\prime}$ must be in almost exact resonance ($\delta \approx 1 \mathrm{~cm}^{-1}$) which can be probably achieved at best only for a limited region of K values. For $W=\left\langle S_{1}^{\prime}\right| \mathbf{H}_{n}\left|S_{2}^{\prime}\right\rangle(n>2) \delta$ should be of the order $1 / 30^{n-2}(\delta \approx 0.03$ for $n=3)$. Since the probability of this situation is very low, the interaction caused by $\mathbf{H}_{\mathrm{n}}(n>2)$ can for the purpose of this paper be safely neglected. The conclusion is, then, that the states $S_{1}^{\prime}, S_{2}^{\prime}$ must be in resonance and must interact with each other through the operators from \mathbf{H}_{1} or \mathbf{H}_{2}. (If the resonance is a simple two level interaction.) Since forbidden transitions are induced by perturbation we want to find specifically which operators from Hamiltonian induce forbidden transitions.

The terms of \mathbf{H} can be represented as $\mathbf{h}_{v, r}$ where v is the power of the vibrational operators and r is the power of the rotational operators. Terms $\mathbf{h}_{\mathrm{v}, 0}$ can be excluded from the consideration since they cannot satisfy conditions (10) or (15) (for proof see Appendix II). Terms $\mathbf{h}_{1, r}$ can also be excluded since their matrix elements do not connect states with nearly equal energies. According to the Amat and Nielsen classification ${ }^{10}$ the order m of the term $\mathbf{h}_{\mathrm{v}, \mathrm{r}}$ is

$$
\begin{equation*}
m=v+r-2 \tag{18}
\end{equation*}
$$

and since m must be equal to 1 or 2 the only terms which have to be considered are:

$$
\begin{equation*}
\mathbf{h}_{2,1} ; \mathbf{h}_{3,1} ; \mathbf{h}_{2,2} ; \mathbf{h}_{0,4} \tag{19}
\end{equation*}
$$

The discussion of conditions which must be satisfied if forbidden transitions are to be observed is now completed. These conditions can be summarized as follows:
a) Equations (6)-(8), (10) or (11)-(13), (15) must be obeyed; b) The states $S_{1}^{\prime}, S_{2}^{\prime}$ must be in resonance; c) The operator of perturbation coupling the states $S_{1}^{\prime}, S_{2}^{\prime}$ must ba one of the operators in (19).

Application

In the preceding section we have derived the conditions necessary for observation of forbidden transitions which are required for determination of A_{0}. In this section it will be shown how these conditions can be applied in a convenient way to observed infrared bands.

Let us suppose we have observed in the infrared spectrum that two assigned bands lie close to each other. We would like to know whether there is a chance to observe the forbidden transitions and to determine A_{0}. Since we know G_{v} values for these bands (Eq. (2) or (4)), values t_{1}, t_{2} immediately follow from Appendix I and Eqs (6,7) or $(11,12)$ and these values can be substituted to Eq. (10) or Eq. (15). Value $\Delta G_{v}=$ $=\left(G_{v}^{\prime}\right)_{1}-\left(G_{v}^{\prime}\right)_{2}$ of interaction is given by values $\left(G_{v}^{\prime}\right)_{1},\left(G_{v}^{\prime}\right)_{2}$ which we know and all we have to do is to find out whether any of the operators in (19) can yield such values of $\Delta k=k_{1}^{\prime}-k_{2}^{\prime}$ which combined with ΔG_{v} would satisfy Eqs (8), (10) or (13), (15). Hence, using only elementary algebra we can determine whether the forbidden transitions can become observable in the studied bands and if so, which perturbation induces forbidden transitions and also type of the forbidden transitions. Then we can predict the approximate frequencies of the forbidden transitions and if force constants for a given molecule are known, also their approximate intensities.

The most often studied bands of axially symmetric molecules are fundamental bands and the first overtones of molecules of symmetry $C_{3 v}$. We shall now demonstrate the above described procedure on several examples of interaction between such bands.

Essential Resonances

We shall discuss first "essential resonances" ${ }^{10}$. Matrix elements of operator $\mathbf{h}_{0,4}$ always couple rotational levels within the same vibrational state. Consequently interactions caused by this operator have always character of "essential resonance" ${ }^{10}$ which can be accidentally strengthened. Since $\left(G_{v}^{\prime}\right)_{1}=\left(G_{v}^{\prime}\right)_{2}$ in this case, it follows that also $t_{1}=t_{2}$ (Appendix I). Then $t_{3} \neq 0, \Delta G_{v}=0$ and conditions (8,10) can be simplified as follows:

$$
\begin{equation*}
\Delta k=k_{1}^{\prime}-k_{2}^{\prime}= \pm 3, \pm 6, \ldots \tag{20}
\end{equation*}
$$

This condition is satisfied by the operator of the type $J_{z} J_{ \pm}^{3}$ and matrix element of interaction is:

$$
\begin{equation*}
W=\langle k| \mathbf{H}_{\mathrm{int}}|k \pm 3\rangle . \tag{21}
\end{equation*}
$$

The explicit expression for $\mathbf{H}_{\text {int }}$ is given in a paper by Olson and coworkers ${ }^{7}$. If for example interacting bands are in parallel fundamental then energy difference δ (Fig. 2) is given by the equation:

$$
\begin{equation*}
\delta=(A-B)\left[k^{2}-(k \pm 3)^{2}\right] \tag{22}
\end{equation*}
$$

From this equation it follows that "essential resonance" is accidentally strengthened if $A \approx B$ and forbidden transitions with $\Delta k= \pm 3$ can become observable. For $3 v_{2}$ vibrational state of PH_{3} condition $A \approx B$ is satisfied and Maki, Sams and Olson were indeed able to observe a number of forbidden transitions with $\Delta k= \pm 3$ in this band.

Another interaction which has the character of "essential resonance" is the so called " $2,-1$ resonance". Matrix element of this interaction has the form ${ }^{7}$:

$$
\begin{equation*}
W=\langle v, l, k| \mathbf{H}_{\mathbf{i n t}}|v, l \mp 2, k \pm 1\rangle . \tag{23}
\end{equation*}
$$

For the degenerate fundamental $\delta=\left(A-B+2 A \zeta_{t}^{z}\right)(1 \pm 2 k)$ and the "essential resonance" can be accidentally strengthened if $A-B+2 A_{\mathrm{t}}^{z^{z}} \approx 0$. Then together with the allowed transitions also transitions with $\Delta l= \pm 1, \Delta k=\mp 2$ can be observed. For v_{3} band of AsH_{3} (ref. ${ }^{7}$) $A-B+2 A \zeta_{t}^{z}=0.36$ and many of forbidden transitions observed in this band are probably induced by this interaction.

The last type of "essential resonance" which will be discussed is " l-type doubling". Matrix elements of these interactions have the following form ${ }^{5}$:

$$
\begin{equation*}
W=\langle v, l, k| \mathbf{H}_{\text {int }}|v, l \pm 2, k \pm 2\rangle . \tag{24}
\end{equation*}
$$

From Eqs (1), (2), (8) it follows immediately that $t_{3}=0$ and Eq. (10) takes the form $t_{1} \neq t_{2}$. From Appendix I it follows that for degenerate fundamental $E: t_{1}=t_{2}=0$ and therefore this interaction does not induce forbidden transitions in fundamentals. On the other hand in the first overtone $2 v(E)$ the upper state energy levels have $l=$ $=0, \pm 2$. The transitions to $l=0$ level have $t_{1}=0$ while for transitions to $l= \pm 2$ levels $t_{1}= \pm 1$. Since $t_{1} \neq t_{2}$ Eq. (10) is satisfied and in addition to allowed transitions $\Delta v=2, \Delta l=0, \Delta k=0$ and $\Delta v=2, \Delta l= \pm 2, \Delta k=\mp 1$ also forbidden transitions $\Delta v=2, \Delta l=0, \Delta k= \pm 3 ; \Delta v=2, \Delta l=\Delta k=\mp 2$ can be induced. Forbidden transitions of this type were observed by Olson ${ }^{5}$ in $2 v_{5}, 2 v_{6}$ bands of $\mathrm{CH}_{3} \mathrm{D}$ (forbidden bands observed in $y_{5}+y_{6}$ combination band are caused by quite analogous interaction).

After discussing the "essential resonances" we shall turn our attention to remaining operators in (19) and present a few examples of interactions between bands of molecules of symmetry $C_{3 v}$.

Accidental Resonances

Interaction between fundamentals. In infrared spectra only fundamentals belonging to symmetry species A_{1} or E are allowed. From Eqs (1), (2), (6), (7) and Appendix I it follows that for these transitions is $t_{1}=t_{2}=0$ and conditions $(8,10)$ reduce to a simple equation

$$
\begin{equation*}
G_{1}^{\prime}-G_{2}^{\prime}=\left(G_{v}^{\prime}\right)_{1}-\left(G_{v}^{\prime}\right)_{2}-\left(k_{1}^{\prime}-k_{2}^{\prime}\right)= \pm 3, \pm 6, \ldots . \tag{25}
\end{equation*}
$$

a) Interaction $v_{i}\left(A_{1}\right) \leftrightarrow v_{j}\left(A_{1}\right)$. This interaction could be important if two parallel fundamentals have nearly equal frequencies. Since $\left(G_{v}^{\prime}\right)_{1}=\left(G_{v}^{\prime}\right)_{2}=0$ Eq. (25) reduces to Eq. (20). None of the operators in (19) can satisfy Eq. (20) in this case and therefore interaction between two parallel fundamentals does not induce forbidden transitions.
b) Interaction $v_{i}(E) \leftrightarrow v_{\mathbf{j}}(E)$. This interaction can become important if two perpendicular bands have nearly equal frequencies. Since $\left(G_{v}^{\prime}\right)_{1}= \pm 1,\left(G_{v}^{\prime}\right)_{2}= \pm 1$ (Eq. (2)) there are two possibilities:

$$
\begin{equation*}
\left(G_{v}^{\prime}\right)_{1}-\left(G_{v}^{\prime}\right)_{2}=0 \quad \text { or } \quad \pm 2 . \tag{26}
\end{equation*}
$$

The first case (0) leads again to Eq. (20) which as was said cannot be satisfied by operators in (19), while in the second case (± 2) (Eq. (25) can be satisfied by operator $\mathbf{h}_{2,1}$ with $k_{1}^{\prime}-k_{2}^{\prime}=\mp 1$. Matrix element of interaction is

$$
\begin{equation*}
W=\left\langle 1^{\mp 1}, 0^{\circ}, k\right| \mathbf{H}_{c}^{x, y}\left|0^{\circ}, 1^{ \pm 1}, k \mp 1\right\rangle, \tag{27}
\end{equation*}
$$

where $\mathbf{H}_{\mathbf{c}}^{\mathrm{x}, \mathrm{y}}$ is well-known first-order Coriolis operator and together with the allowed transitions $\Delta l_{\mathrm{i}}=\Delta k= \pm 1 ; \Delta l_{\mathrm{j}}=\Delta k= \pm 1$, also forbidden transitions $\Delta l_{\mathrm{i}}= \pm 1, \Delta k=\mp 2 ; \Delta l_{\mathrm{j}}= \pm 1, \Delta k=\mp 2$ can be induced.
c) Interaction $v_{\mathrm{i}}\left(A_{1}\right) \leftrightarrow v_{\mathrm{j}}(E)$. This interaction is to be considered if parallel and perpendicular fundamentals have nearly equal frequencies. In this case $\left(G_{v}^{\prime}\right)_{1}=0$, $\left(G_{v}^{\prime}\right)_{2}= \pm 1$ and Eq. (25) can be satisfied by operator $\mathbf{h}_{2,2}$ for which $k_{1}^{\prime}-k_{2}^{\prime}= \pm 2$. Matrix element of interaction is

$$
\begin{equation*}
W=\left\langle 1,0^{\circ}, k\right| \mathbf{H}_{\text {int }}\left|0,1^{ \pm 1}, k \mp 2\right\rangle, \tag{28}
\end{equation*}
$$

where $\mathbf{H}_{\text {int }}$ is " K-type doubling" operator ${ }^{11}$ and besides allowed transitions $\Delta v_{i}=1$, $\Delta k=0 ; \Delta v_{\mathrm{j}}=1, \Delta l_{\mathrm{j}}=\Delta k= \pm 1$ also forbidden transitions $\Delta v_{\mathrm{i}}=1, \Delta k= \pm 3$ and $\Delta v_{\mathrm{j}}=1, \Delta l_{\mathrm{j}}= \pm 1, \Delta k=\mp 2$ can be induced. Olson, Maki and Sams^{7} observed forbidden transitions of this type induced by interaction between $v_{1}\left(\approx 2115 \mathrm{~cm}^{-1}\right)$
and $v_{3}\left(\approx 2126 \mathrm{~cm}^{-1}\right)$ bands of arsine. Lovejoy and Olson ${ }^{6}$ observed such transitions in $v_{1}\left(\approx 2187 \mathrm{~cm}^{-1}\right)$ and $v_{4}\left(\approx 2188 \mathrm{~cm}^{-1}\right)$ bands of $\mathrm{SiH}_{3} \mathrm{D}$.

Interactions between the fundamental and the first overtone. The upper state energy levels of the fundamental and the first overtone can be connected only by operator $\mathbf{h}_{3,1}$. No other operator in (19) can couple these levels. We shall present two examples of interactions of this type.
a) Interaction $v_{\mathrm{i}}\left(A_{1}\right) \leftrightarrow 2 v_{\mathrm{j}}(E)$. The first overtone $2 v_{\mathrm{j}}$ is split into two vibrational levels: $2 v_{j}(l=0)$ and $2 v_{j}(l= \pm 2)$. As far as interaction $v_{i} \leftrightarrow 2 v_{j}(l=0)$ is concerned, since $\left(G_{v}^{\prime}\right)_{1}=\left(G_{v}^{\prime}\right)_{2}=0$ this is the same case as the interaction $v_{i}\left(A_{1}\right) \leftrightarrow v_{j}(A)_{1}$ which has been already discussed and therefore this interaction does not induce forbidden transitions. However for transitions $2 v_{j}(l= \pm 2)$ is $\Delta l= \pm 2, \Delta k=\mp 1$ and $t_{2}=$ $= \pm 1$. (See Eq. (2) and Appendix I). Since $t_{1}=0$ from Eq. (10) it follows that $t_{3} \neq \pm 1$ and Eq. (8) takes the following form

$$
\begin{equation*}
\left(G_{v}^{\prime}\right)_{1}-\left(G_{v}^{\prime}\right)_{2}-\left(k_{1}^{\prime}-k_{2}^{\prime}\right)=0, \pm 6, \pm 9, \ldots . \tag{29}
\end{equation*}
$$

After substituting $\left(G_{v}^{\prime}\right)_{1}=0,\left(G_{v}^{\prime}\right)_{2}= \pm 2$ to Eq. (29) we obtain:

$$
\begin{equation*}
k_{1}^{\prime}-k_{2}^{\prime}= \pm 2, \pm 4, \ldots . \tag{30}
\end{equation*}
$$

Eq. (30) cannot be satisfied by operator $\mathbf{h}_{3,1}$ (maximum Δk in matrix elements of this operator is ± 1) and this interaction does not induce forbidden transitions either.
b) Interaction $v_{\mathrm{i}}(E) \leftrightarrow 2 v_{\mathrm{j}}(E)$. In this case there are again two possible interactions $v_{i} \leftrightarrow 2 v_{j}(l=0)$ and $v_{i} \leftrightarrow 2 v_{j}(l= \pm 2)$. As far as the former interaction is concerned it is easy to see that this is the same case as already discussed interaction $v_{i}\left(A_{1}\right) \leftrightarrow$ $\leftrightarrow v_{j}(E)$. However, requirement $k_{1}^{\prime}-k_{2}^{\prime}= \pm 2$ cannot be satisfied by operator $\mathbf{h}_{3,1}$ and therefore this interaction does not induce forbidden transitions. For the interaction $v_{i}(E) \leftrightarrow 2 v_{j}(l= \pm 2) t_{1}=0, t_{2}= \pm 1$ and Eq. (29) must be obeyed. Since $\left(G_{v}^{\prime}\right)_{1}= \pm 1,\left(G_{v}^{\prime}\right)_{2}= \pm 2$ there are two possibilities:

$$
\begin{equation*}
\left(G_{v}^{\prime}\right)_{1}-\left(G_{v}^{\prime}\right)_{2}=\mp 1 \quad \text { or } \quad \pm 3 . \tag{31}
\end{equation*}
$$

After substituting these values to Eq. (29) we find that in the first case $k_{1}^{\prime}-k_{2}^{\prime}$ must be equal to ∓ 1 while in the second case ($k_{1}^{\prime}-k_{2}^{\prime}$) must be equal to ± 3. Condition $k_{1}^{\prime}-k_{2}^{\prime}=\mp 1$ can be satisfied by operator $\mathbf{h}_{3,1}$ while the condition $k_{1}^{\prime}-k_{2}^{\prime}=$ $= \pm 3$ cannot. Thus the matrix element of interaction is

$$
\begin{equation*}
W=\left\langle 1^{ \pm 1}, 0^{\circ}, k\right| \mathbf{H}_{\mathrm{int}}\left|0^{\circ}, 2^{ \pm 2}, k \pm 1\right\rangle \tag{32}
\end{equation*}
$$

and together with allowed transitions $\Delta v_{\mathrm{i}}=1, \Delta l=\Delta k= \pm 1$ and $\Delta v_{\mathrm{j}}=2, \Delta l=$ $= \pm 2, \Delta k=\mp 1$ also the forbidden transitions $\Delta v_{i}=1, \Delta l= \pm 1, \Delta k=\mp 2$ and $\Delta v_{\mathrm{j}}=2, \Delta l= \pm 2, \Delta k= \pm 2$ are induced. Olson ${ }^{5}$ observed transitions of this type induced by interaction between $v_{4}(E)$ and $2 v_{5}(E)$ bands of $\mathrm{CH}_{3} \mathrm{D}$.

DISCUSSION

The problem of the indeterminacy of the constant A_{0} of symmetric top molecules is well-known ${ }^{1,2,12,13}$. The uncertainty of the constants A_{0} determined from the values $\left[A_{t}\left(1-\zeta_{t}^{z}\right)-B_{t}\right]$ and the ζ-sum rule is estimated to be less than five percent ${ }^{1.12}$ while the uncertainty of the constants A_{0} determined by the Barnett and Edwards method ${ }^{13}$ can be estimated to be $\approx 1 \%$. These uncertainties are several orders of magnitude higher than those of the constants B_{0} determined from the microwave or high resolution infrared spectra. As a consequence also our knowledge of the geometries of simple symmetric top molecules is much less accurate than for linear molecules.

Recently another method was suggested ${ }^{2}$ for accurate determination of A_{0}. This method requires the data on higher overtones and the uncertainty of the constant A_{0} determined in this way can be estimated to be $\approx 0.01 \%$. However this method thus far has not been applied in practice. On the other hand recently several papers appeared ${ }^{5-8}$, where the constant A_{0} was determined with the precision $\approx 0.001 \%$ comparable with the precision obtained for the constants B_{0}. In these papers the constants A_{0} were determined from the differences between the frequencies of allowed and forbidden transitions terminating on the same upper state energy level, i.e. from the ground state differences in K. This method requires the knowledge of frequencies of forbidden transitions with $\Delta k \neq 0, \pm 1$. Since this method gives the most accurate values of the constants A_{0}, we thought that it would be useful to determine the conditions necessary for observation of forbidden transitions. There are two possible approaches to this problem. The first, more rigorous would be the derivation of complete expressions for intensities of forbidden transitions using the perturbation method. In the second, simpler approach which was actually used in this paper, it is assumed that contribution of the nonresonant interactions to the intensity of forbidden transition is negligible and that observation of forbidden transition is caused by dominant interaction between the states having nearly equal energies.

It was demonstrated on several examples that application of the conditions necessary for observation of forbidden transitions which were derived in this paper is very easy requiring in fact only simple algebra and it is believed that these conditions could serve as a useful guide in determining whether the search for forbidden transitions in measured bands would be successful or not.

APPENDIX 1

Allowed transition i from the ground vibrational state must obey the relations:
Groups I:

$$
\begin{equation*}
\left(G_{\mathrm{v}}\right)_{\mathrm{i}}-\Delta k_{\mathrm{i}}=t_{\mathrm{i}} n \tag{Al}
\end{equation*}
$$

Groups II:

$$
\begin{equation*}
\left(G_{\mathrm{V}}\right)_{\mathrm{i}}-\Delta k_{\mathrm{i}}(1+n)=n\left(1-2 t_{\mathrm{i}}\right) \tag{A2}
\end{equation*}
$$

All groups:

$$
\begin{equation*}
\Delta k_{\mathrm{i}}=0 \quad \text { or } \quad 1 \quad \text { or }-1 \tag{A3}
\end{equation*}
$$

Since minimal n is equal to 3 (Groups I) or 2 (Groups II) there are only two possibilities for given $\left.\left(G_{v}\right)_{\mathrm{i}}: a\right)$ Neither one of the allowed Δk_{i} satisfies the condition ($A I$ or $A 2$) and transition is forbidden; b) Only one of the allowed $\Delta k_{i}(A 3)$ satisfies the condition ($A 1$ or $A 2$). Then apparently the value of $\left(G_{\mathrm{v}}\right)_{\mathrm{i}}$ determines the values $\Delta k_{\mathrm{i}}, t_{\mathrm{i}}$.

APPENDIX 11

The following statement will be proved: If operator connecting the states $S_{1}^{\prime}, S_{2}^{\prime}$ is diagonal in k then $J_{1}^{\prime \prime}=k_{2}^{\prime \prime}$ (Fig. 2).

Proof for groups I:

$$
\begin{align*}
& \left(G_{\mathrm{v}}^{\prime}\right)_{1}-k_{1}^{\prime}+k_{2}^{\prime \prime}=t_{1} n \tag{B1}\\
& \left(G_{\mathrm{v}}^{\prime}\right)_{2}-k_{2}^{\prime}+k_{2}^{\prime \prime}=t_{2} n \tag{B2}\\
& \left(G_{\mathrm{v}}^{\prime}\right)_{1}-\left(G_{\mathrm{v}}^{\prime}\right)_{2}=t_{3} n \tag{B3}
\end{align*}
$$

Then:

$$
\begin{equation*}
\left(k_{1}^{\prime}-k_{1}^{\prime \prime}\right)-\left(k_{2}^{\prime}-k_{2}^{\prime \prime}\right)=p h \tag{B4}
\end{equation*}
$$

where $p=t_{3}-t_{1}+t_{2}$ is integer or zero. Minimal value of n is equal to 3 . Since transitions $S_{1}^{\prime \prime} \rightarrow S_{1}^{\prime}, S_{2}^{\prime \prime} \rightarrow S_{2}^{\prime}$ are allowed

$$
\begin{equation*}
\left|k_{1}^{\prime}-k_{1}^{\prime \prime}\right| \leqq 1, \quad\left|k_{2}^{\prime}-k_{2}^{\prime \prime}\right| \leqq 1 \tag{B5}
\end{equation*}
$$

The Eq. (B4) can be obeyed only for $p=0$ and since $k_{1}^{\prime}=k_{2}^{\prime}$ also $k_{1}^{\prime \prime}$ must be equal to $k_{2}^{\prime \prime}$ q.e.d.
Proof for groups II:

$$
\begin{align*}
& \left(G_{\mathrm{v}}^{\prime}\right)_{1}-\left(k_{1}^{\prime}-k_{1}^{\prime \prime}\right)(1+n)=n\left(1+2 t_{1}\right) \tag{B6}\\
& \left(G_{\mathrm{v}}^{\prime}\right)_{2}-\left(k_{2}^{\prime}-k_{2}^{\prime \prime}\right)(1+n)=n\left(1+2 t_{2}\right) \tag{B7}\\
& \left(G_{\mathrm{v}}^{\prime}\right)_{1}-\left(G_{\mathrm{v}}^{\prime}\right)_{2}=2 t_{3} n \tag{B8}
\end{align*}
$$

Then:

$$
\begin{equation*}
\left(k_{1}^{\prime}-k_{1}^{\prime \prime}\right)-\left(k_{2}^{\prime}-k_{2}^{\prime \prime}\right)=2 n_{i}^{\prime}\left(t_{3}-t_{1}+t_{2}\right)(1+n) \tag{B9}
\end{equation*}
$$

Right-hand side of Eq. ($B 9$) must be integer and then $\left(t_{3}-t_{1}+t_{2}\right) /(1+n)$ must be integer let us say k. Since minimal n is equal to 2 and again $\left|\left(k_{1}^{\prime}-k_{1}^{\prime \prime}\right)\right| \leqq 1,\left|\left(k_{2}^{\prime}-k_{2}^{\prime \prime}\right)\right| \leqq 1$, in the same way as for groups I it can be proved that $k_{1}^{\prime \prime}=k_{2}^{\prime \prime}$.

Since $k_{1}^{\prime \prime} \neq k_{2}^{\prime \prime}$ is necessary condition for application of Eq. (5) all operators diagonal in k can be excluded from consideration for the purposes of this paper.

The author would like to express gratitude to Professor I. M. Mills, University of Reading, Professor K. Narahari Rao, the Ohio State University, Dr W. B. Olson and Dr J. T. Hougen, National Bureau of Standards, for helpful discussions and comments.

REFERENCES

1. Mills I. M. in the book: Modern Research (K. Narahari Rao, C. W. Matthews, Eds), Molecular Spectroscopy. Academic Press, New York 1973.
2. Sarka K., Narahari Rao K.: J. Mol. Spectrosc. 46, 223 (1973).
3. Maki A. G., Hexter R. M.: J. Chem. Phys. 53, 453 (1970).
4. Matsuura H., Nakagawa T., Overend J.: J. Chem. Phys. 53, 2540 (1970).
5. Olson W. B.: J. Mol. Spectrosc. 43, 190 (1972).
6. Lovejoy R. W., Olson W. B.: J. Chem. Phys. 57, 2224 (1972).
7. Olson W. B., Maki A. G., Sams R. L.: J. Mol. Spectrosc. 55, 252 (1975).
8. Maki A. G., Sams R. L., Olson W. B.: J. Chem. Phys. 58, 4502 (1973).
9. Hougen J. T.: J. Chem. Phys. 37, 1433 (1962).
10. Amat G., Nielsen H. H.: J. Chem. Phys. 36, 1859 (1962).
11. Hoffman J. M., Nielsen H. H., Narahari Rao K.: Z. Elektrochem. 64, 606 (1960).
12. Allen H. C. jr, Cross P. C.: Molecular Vib-Rotors. Wiley, New York and London 1963.
13. Barnett T. L., Edwards T. H.: J. Mol. Spectrosc. 20, 347 (1966).

[^0]: * Assuming that quantum number J has the same values for states $S_{1}^{\prime \prime}, S_{2}^{\prime \prime}$. Modification of Eq. (5) for $J_{1}^{\prime \prime} \neq J_{2}^{\prime \prime}$ is obvious.

