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The conditions under which observation of the vibration-rotation transitions with Ak ^ 0, ± 1 can 
be expected in infrared spectra of symmetric top molecules are discussed. Theoretical results 
are applied to fundamentals and first overtones of molecules of symmetry C3v . 

It is well known, that for symmetric top molecules accurate values of A0 cannot be determined 
by the standard methods of analysis of vibration-rotation or pure rotation spectra. The selection 
rules for the infrared absorption spectra are A / = 0, ± 1 and A.k = 0, or AA: = ± 1 ; the selection 
rules for Ak prevent1 ,2 the accurate determination of A0. However, since k is not a "good quan-
tum number" for the symmetric top molecules, selection rules for Ak are not strict and are valid 
in the zeroth approximation only. This means that, in addition to the transitions with Ak = 0, ± 1, 
transitions with Ak ^ 0,1 can also be allowed. However, since they are forbidden in zeroth 
approximation, their intensity is usually too low for detection. In some cases these transitions 
can become observable and then it is possible to determine A0 from the differences between the 
frequencies of the transitions with Ak = 0, ± 1 and Ak =)= 0, ± 1 terminating on the same upper 
state energy level. In this way A0 was determined for CH 3 I by Maki and Hexter3 and Matsuura 
and coworkers4, for C H 3 D by Olson5; for SiH 3 D by Lovejoy and Olson6; for AsH3 by Olson 
and coworkers7; and for PH 3 by Maki and coworkers8. 

Since the determination of A0 is of principal spectroscopic interest e.g. for de-
termination of the molecular structure, the conditions under which observation 
of the transitions with Ak ^ 0, ± 1 can be expected will be discussed in this paper. 

THEORETICAL 

It will be supposed throughout this paper that the molecule is in a totally sym-
metric electronic state, and the lower states for all transitions discussed are the 
rotational levels of the ground vibrational state. 

It was found useful to classify the states according to the quantum number G 
introduced by Hougen9 which is defined as follows: 

For all groups containing symmetric top molecules except the groups Dnd {n even), 
S2n (n even), (Groups I): 
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2818 S a r k a : 

Gv = („/2) I ^ + Es j / J . « 
B j 

For groups DND (N even), S2N (N even) (Groups II): 

G = G y - k( 1 + n), 

Gv = n J>B + • 
B 

M 

Notice that in the ground vibrational state G" = —k, G" — — k( 1 + n) for groups I 
and II, respectively, and also that G classifies the states only with respect to Cn 

(Groups I) or S2n (Groups II) elements of symmetry. Thus, results obtained by using 
only the quantum number G for classification of the states give the maximum in-
formation obtainable for the groups Cn and S2n (n even). For other symmetry groups 
additional restrictions must be imposed, following from the presence of symmetry 
elements other than Cn , S2n. These restrictions can, however, be imposed as the last 
step. 

The infrared vibration-rotation transitions can be divided with the help of G 
into the following groups: 1) Strictly forbidden are transitions for which AG ^ tn 
for groups I or A G # n(l + 2t) for groups II, where t is an arbitrary integer including 
zero. 2) Strongly allowed are transitions for which AG = tn (Groups I) or AG = 
= n( 1 + 2t) (Groups II) and Ak = 0, or + 1 . 3) Approximately forbidden are 
transitions for which AG = tn (Groups I) or AG = n(i + 21) (Groups II) but 
Ak # 0, ± 1 . These transitions are forbidden in the zeroth approximation but can be 
allowed in higher approximation. Since transitions 1) will never appear in the 
further discussion, the term forbidden will be used to mean type (3) transitions. 

Only a special kind of forbidden transition is of interest for the purpose of this 
paper, namely forbidden transitions which terminate on the same upper state energy 
levels as do other allowed transitions (Fig. l). 

Let the transition S'l S[ be allowed (Ak = 0 or + 1 or — l), and let its observed 
frequency be va. If in addition the forbidden transition S2 —• S\ can also be observed, 

= (A0 - B0) (k'[2 - k f ) - DJ
0
KJ"(J" + 1) ( k f - k"2) - DK

0(k'[4 - k f ) . (5) 

Since accurate values of B0, DJ
0
K are usually known, it is possible from Eq. (5) 

to determine accurate values of A0, D* if a sufficient number of the forbidden transi-
tions can be observed. 

* Assuming tha t q u a n t u m n u m b e r J has the same values fo r states S2. Modif ica t ion 
of Eq . (5) f o r J'[ =1= J2 is obvious . 

then* 

Av = vf - va 
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Determinat ion of A0 for Symmetric Top Molecules 2819 

In the zeroth approximation (rigid rotor -f harmonic oscillator) only one transi-
tion (with respect to Ak) is allowed f rom the ground state to any excited vibrational 
state. The forbidden transition S'2 -> S[ then must be induced by perturbat ion 
of the state S[ through interaction with another upper state S'2, for which the transi-
tion S2 S2 is allowed (Fig. 2).* Then also the forbidden transition S'[ -» S2*is 
induced. 

The first step is to find some relation between Ak values of allowed transitions 
and Ak value for matrix element of the perturbation. This relation should also reflect 
condition k'[ ^ k2 necessary for determination of A0 (see Fig. 1 and Eq. (5)). We shall 
try to find this condition using the quantum number G. 

Groups I. The following equations must be obeyed9 : 

G; - c ; = M , (6) 

C2 - G"2 = t2n , (7) 

c; -G'2 = t3n , (8) 

where tu t2,t5 — 0, ± 1 , ± 2 , . . . and for a given interaction the values of tl,t2 

are fixed by the condition that transitions S'[ S\, S2 -» S'2 are allowed (See Ap-
pendix I). 

*i 

Sf(Gj' k') 

<f 
T \ 

52(G.• k,) 
i • 

" V (M* ' *2,. i) 2f 
Sf ( Gf k: J (M2J (M2f; 

S'j ( G'2 k^ 

F I G . 1 

Allowed va and Forb idden vf Transi t ions 
Terminat ing on the Same Upper State Energy 
Level 

F I G . 2 

Forb idden Transit ions v l f , v2 f Induced by 
Interact ion W between the States S'2 

* Apparent ly forbidden transit ions S2 ->S[, S'{ —>S'2 can be also induced, if there is 
a mixing of the wavefunctions of the states S'[, S2. Au thor is indebted to Professor Mills for this 
remark. 

Col lec t ion Czechos lov . Chem. C o m m u n . [Vol. 41] [1976] 



2820 Sarka: 

Then 
k'[ — k'2 = G2 — = (t, - t 2 - t 3 ) n . (9) 

Since values of tv,t2 for a given interaction are fixed, k'l # k'2 if and only if 

*3 *> h ~ h • (10) 

Groups II. The following relations must be obeyed9: 

G; - G'l = n(l + 2 t t ) , (11) 

G'2 ~ G'2 = n( 1 + 212) , (12) 

G\ - G'2= 2t3n . (13) 

Again tu t2, t3 = 0 , ± 1 , ±2 . . . and tlf t2 are fixed by the same condition as for 
groups I and 

1 In 
k'[ -k"2= (G2 - G") = (tl - t 2 - t3) . (14) 

1 + n 1 + n 

Since k'{ —• k2 must be an integer k'[ ^ k2 if and only if 

h = tl - t2 + t4(l + n) , (15) 

where tA is arbitrary nonzero integer. 
Equations (6 — 8, 10 or 11—13, 15) are basic conditions for perturbation which 

must be obeyed if forbidden transitions S2 -> S[, S'[ -> S2 become allowed. However 
these conditions do not say anything about the intensity of the induced transitions. 
Thus, the next step will be the inspection of the intensities of the induced forbidden 
transitions S2 ->• SS" S2. The following two quantities will be defined (Fig. 2): 
5 = |E\ — E'2\ where E\, E2 are energies of the unperturbed states S\, S2 and W = 
= |<S; |H| S'2)|. The intensity of a transition is proportional to the square of the 
transition moment M (M = | ^ | L e t the unperturbed moments for the 
transitions S'[ S\, S"2 S'2 be M l a , M2 a , respectively, and let the unperturbed 
moments for the transitions S2 S[, S'[ -»• S'2 be equal to zero. Then the squares 
of the transition moments M l f , M 2 f induced by perturbation are 

M2
1{ = pM2

2a , M\t = PMl, (16) 

where 

p = i[l - 1/(1 + 4 W 2 l 5 2 ) i f 2 Y . (17) 
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Determination of A0 for Symmetric Top Molecules 2821 

The ratio M\ajM\f = M2
u\M\f was calculated for several values of W/S and results 

are presented as follows: 

W/6 30 2 1 0-5 0-3 0-1 0-03 

0 0-5 0-29 0-13 004 001 000019 00000016 

Particularly interesting are results for Wfi = 30, 1, 0-03 since 30 is a typical value 
of the ratio Hn /Hn + 1 in the usual rovibrational classification of the magnitudes 
of the terms of the Hamiltonian10. From above calculations it immediately follows 
that for the observation of forbidden transitions Wmust necessarily be of the order 
of <5. 

Since H0 is diagonal in all quantum numbers, W is the matrix element of Hx 

or H2 or still higher order Hamiltonian and since S must be of the same order, the 
states Si, S2 must be in resonance. Notice also that if W = <Si|HX | S'2) « 30 c m - 1 

then v? « v2 (v° is the vibrational frequency) satisfactory fulfills the condition 
W « S, while if W= <Si|H2| S'2> « 1 c m - 1 the states S[, S2 must be in almost 
exact resonance (<5 « 1 cm"1) which can be probably achieved at best only for 
a limited region of K values. For W = <Si|Hn | S2} (n > 2) S should be of the 
order 1/30" ~2 ((5 » 0-03 for n — 3). Since the probability of this situation is very 
low, the interaction caused by Hn (n > 2) can for the purpose of this paper be safely 
neglected. The conclusion is, then, that the states Si, S2 must be in resonance and 
must interact with each other through the operators from Hx or H2. (If the resonance 
is a simple two level interaction.) Since forbidden transitions are induced by perturba-
tion we want to find specifically which operators from Hamiltonian induce forbidden 
transitions. 

The terms of H can be represented as hv r where v is the power of the vibrational 
operators and r is the power of the rotational operators. Terms hv 0 can be excluded 
from the consideration since they cannot satisfy conditions (70) or (15) (for proof 
see Appendix II). Terms hj r can also be excluded since their matrix elements do not 
connect states with nearly equal energies. According to the Amat and Nielsen clas-
sification10 the order m of the term hv r is 

m = v + r - 2 (18) 

and since m must be equal to 1 or 2 the only terms which have to be considered are: 

h 2 , i ; h 3 , i ; h2,2; ho,4- O9) 

The discussion of conditions which must be satisfied if forbidden transitions are 
to be observed is now completed. These conditions can be summarized as follows: 
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2822 Sarka: 

a) Equations (d ) - (8 ) , (10) or (11)-(13), (15) must be obeyed; b) The states S[, S2 must 
be in resonance; c) The operator of perturbation coupling the states S\, S2 must 
ba one of the operators in (19). 

Application 

In the preceding section we have derived the conditions necessary for observation 
of forbidden transitions which are required for determination of A0. In this section 
it will be shown how these conditions can be applied in a convenient way to observed 
infrared bands. 

Let us suppose we have observed in the infrared spectrum that two assigned bands 
lie close to each other. We would like to know whether there is a chance to observe 
the forbidden transitions and to determine A0. Since we know Gv values for these 
bands (Eq. (2) or (4)), values tu t2 immediately follow f r o m Appendix I and Eqs (6, 7) 
or (11, 12) and these values can be substituted to Eq. (10) or Eq. (15). Value AGv = 
= — (Gy)2 of interaction is given by values ( G ^ , (G'V)2 which we know 
and all we have to do is to find out whether any of the operators in (19) can yield 
such values of Ak = k\ — k2 which combined with AGV would satisfy Eqs (8), (70) 
or (13), (15). Hence, using only elementary algebra we can determine whether the 
forbidden transitions can become observable in the studied bands and if so, which 
perturbat ion induces forbidden transitions and also type of the forbidden transitions. 
Then we can predict the approximate frequencies of the forbidden transitions and 
if force constants for a given molecule are known, also their approximate intensities. 

The most often studied bands of axially symmetric molecules are fundamenta l 
bands and the first overtones of molecules of symmetry C3 v . We shall now de-
monstrate the above described procedure on several examples of interaction between 
such bands. 

Essential Resonances 

We shall discuss first "essential resonances" 1 0 . Matr ix elements of operator h0>4 

always couple rotat ional levels within the same vibrational state. Consequently 
interactions caused by this operator have always character of "essential resonance" 1 0 

which can be accidentally strengthened. Since (Gy)L — (G[)2 in this case, it follows 
that also ty = t2 (Appendix I). Then f 3 # 0, AGV = 0 and conditions (S, 10) can be 
simplified as follows: 

This condition is satisfied by the operator of the type j j 3
± and matrix element 

of interaction is: 

Ak = k\ - k'2 = ± 3 , ± 6 , . (20) 

W = </c |H i n t | /c ± 3 ) . (21) 
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Determination of A0 for Symmetric Top Molecules 2823 

The explicit expression for H i n t is given in a paper by Olson and coworkers7. 
If for example interacting bands are in parallel fundamental then energy difference 3 
(Fig. 2) is given by the equation: 

5 = ( A - B ) [k2 ~ ( k ± 3)2] . (22) 

From this equation it follows that "essential resonance" is accidentally strengthened 
if A « B and forbidden transitions with Ak — ± 3 can become observable. For 3v2 

vibrational state of PH3 condition A « B is satisfied and Maki, Sams and Olson 
were indeed able to observe a number of forbidden transitions with Ak — ± 3 in this 
band. 

Another interaction which has the character of "essential resonance" is the so 
called "2, —1 resonance". Matrix element of this interaction has the form7: 

W= <i>, l,k\Hint\ v, I + 2, k ± 1> . (23) 

For the degenerate fundamental S = (A — B + 2ACt) (1 ± 2k) and the "essential 
resonance" can be accidentally strengthened if A — B + 2A£z

t ~ 0- Then together 
with the allowed transitions also transitions with AI = ± 1, A k = + 2 can be observed. 
For v3 band of AsH3 (ref.7) A — B + 2A£z

t — 0-36 and many of forbidden transi-
tions observed in this band are probably induced by this interaction. 

The last type of "essential resonance" which will be discussed is "/-type doubling". 
Matrix elements of these interactions have the following form5: 

W = <u, /, fc|Hint| v, I ± 2, k ± 2> . (24) 

From Eqs (1), (2), (8) it follows immediately that t3 — 0 and Eq. (10) takes the form 
tl tz. From Appendix I it follows that for degenerate fundamental E : = t2 = 0 
and therefore this interaction does not induce forbidden transitions in fundamentals. 
On the other hand in the first overtone 2v(£) the upper state energy levels have I = 
= 0, ±2. The transitions to I — 0 level have = 0 while for transitions to I — ±2 
levels ty = ±1. Since tx # t2 Eq. (10) is satisfied and in addition to allowed transi-
tions Av = 2, A/ = 0, A/c = 0 and Av = 2, Al = ±2, Ak = + 1 also forbidden 
transitions Av = 2, Al = 0, Ak = ±3 ; Av — 2, Al — Ak = +2 can be induced. 
Forbidden transitions of this type were observed by Olson5 in 2v5, 2v6 bands of 
CH3D (forbidden bands observed in v5 + v6 combination band are caused by quite 
analogous interaction). 

After discussing the "essential resonances" we shall turn our attention to remaining 
operators in (19) and present a few examples of interactions between bands of mole-
cules of symmetry C3v. 
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Accidental Resonances 

Interaction between fundamentals. In infrared spectra only fundamentals belong-
ing to symmetry species A1 or E are allowed. From Eqs (/), (2), (6), (7) and Appen-
dix I it follows that for these transitions is tl = t2 = 0 and conditions (8, 10) 
reduce to a simple equation 

G[ - GI = (GO, - (G;)2 - (k[ -k'2)=±3, ± 6 , . . . . , (25) 

a) Interaction V ; ^ ) V j ^ ) . This interaction could be important if two parallel 
fundamentals have nearly equal frequencies. Since (Gy)i = (G;)2 = 0 Eq. (25) 
reduces to Eq. (20). None of the operators in (19) can satisfy Eq. (20) in this case 
and therefore interaction between two parallel fundamentals does not induce forbid-
den transitions. 

b) Interaction v{(E) <-» Vj(E). This interaction can become important if two per-
pendicular bands have nearly equal frequencies. Since (G^)I = ± 1 , (G;)2 = ± i 
(Eq. (2)) there are two possibilities: 

(GOI - (G;)2 = 0 or ± 2 . (26) 

The first case (0) leads again to Eq. (20) which as was said cannot be satisfied by opera-
tors in (19), while in the second case ( ± 2 ) (Eq. (25) can be satisfied by operator 
h 2 1 with k\ — /c2 = + 1 . Matrix element of interaction is 

W = < 1 * \ 0°, /c|H*'y |0°, l * 1 , k + i y , (27) 

where H*'y is well-known first-order Coriolis operator and together with the al-
lowed transitions A/; = Ak = + 1 ; A/j = Afc = ± 1 , also forbidden transitions 
A/i = + 1 , Ak = + 2 ; A/j = ± 1 , Ak = +2 can be induced. 

c) Interaction v^A^ <-*• Vj(£). This interaction is to be considered if parallel and 
perpendicular fundamentals have nearly equal frequencies. In this case (Gy)i = 0, 
(GV)2 = ± 1 and Eq. (25) can be satisfied by operator h2 2 for which k\ — k'2 = ±2. 
Matrix element of interaction is 

W = < l , 0 ° , f c | H i n t | 0 , l * 1 , / c + 2 > , (28) 

where H i n t is "X-type doubling" operator1 1 and besides allowed transitions Auj = 1, 
Ak = 0; AiJj = 1, A/j — Ak = + 1 also forbidden transitions Av{ = 1, Ak = + 3 
and At'j = 1, A/j = + 1 , Ak = +2 can be induced. Olson, Maki and Sams7 observed 
forbidden transitions of this type induced by interaction between v, ( ^ 2 1 1 5 c m " 1 ) 
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and v 3 ( « 2126 cm *) bands of arsine. Lovejoy and Olson 6 observed such transitions 
in Vj ( w 2 1 8 7 c m - 1 ) and v4 ( « 2 1 8 8 c m - 1 ) bands of S iH 3 D. 

Interactions between the fundamental and the first overtone. The upper state 
energy levels of the fundamental and the first overtone can be connected only by ope-
rator h3>1. N o other operator in (19) can couple these levels. We shall present two 
examples of interactions of this type. 

a) Interaction v ^ ^ ) 2vj (E) . The first overtone 2vj is split into two vibrational 
levels: 2Vj(/ = 0) and 2vj(/ = ± 2 ) . As far as interaction v; 2v}(I = 0) is concerned, 
since (Gy)i = (G'y)2 = 0 this is the same case as the interaction V ; ^ ) <-* v ^ y ^ which 
has been already discussed and therefore this interaction does not induce forbidden 
transitions. However for transitions 2vj(Z = ± 2 ) is AI = ± 2 , A k = + 1 and t2 = 
= ± 1 . (See Eq. (2) and Appendix I). Since tx = 0 f rom Eq. (10) it follows that 
1 3 ^ + 1 and Eq. (8) takes the following form 

(GO, - ( c ; ) 2 - (k[ - k'2) = 0, ± 6 , ± 9 , . . . , (29) 

After substituting (Gy)i = 0, (G;)2 = ± 2 to Eq. (29) we obtain: 

k\ - k2= ±2, ± 4 , . . . . (30) 

Eq. (30) cannot be satisfied by operator h3>1 (maximum Ak in matrix elements 
of this operator is ± 1) and this interaction does not induce forbidden transitions 
either. 

b) Interaction v ;(£) <-» 2v-}(E). In this case there are again two possible interactions 
V; <-»• 2vj(/ = 0) and v; 2vj(l = ± 2). As far as the former interaction is concerned 
it is easy to see that this is the same case as already discussed interaction v^Aj ) <-» 
«-• Vj(£). However, requirement k\ — k2 = ±2 cannot be satisfied by operator h 3 j l 

and therefore this interaction does not induce forbidden transitions. Fo r the inter-
action v{(E) <-» 2vj(/ = + 2 ) t1 = 0, t2 = ±1 and Eq. (29) must be obeyed. Since 

= ±1,(GV)2 = + 2 there are two possibilities: 

(Gy)i ~ ( g 0 2 = + 1 or ± 3 . (31) 

After substituting these values to Eq. (29) we find that in the first case k\ — k2 

must be equal to + 1 while in the second case (k\ — k2) must be equal to ± 3 . Condi-
tion k\ — k2 = + 1 can be satisfied by operator h 3 1 while the condition k\ — k2 = 
= ± 3 cannot. Thus the matrix element of interaction is 

< 1 ± \ 0 ° , k | H i n l | 0 ° , 2 ± 2 , k ± 1) (32) 
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and together with allowed transitions A ^ = 1, A/ = A/c = ± 1 and Av} = 2, AI = 
= ± 2 , A/c = + 1 also the forbidden transitions Ai;; = 1, AI = ± 1 , A k = + 2 and 
At,j = 2, A/ = + 2 , A/c = + 2 are induced. Olson 5 observed transitions of this 
type induced by interaction between v4(£) and 2v5(E) bands of C H 3 D . 

DISCUSSION 

The problem of the indeterminacy of the constant A0 of symmetric top molecules 
is we l l -known 1 ' 2 ' 1 2 , 1 3 . The uncertainty of the constants A0 determined f rom the 
values ~~ Ct) ~ ^ t ] a n d the £-sum rule is estimated to be less than five per-
c e n t 1 1 2 while the uncertainty of the constants A0 determined by the Barnett and 
Edwards me thod 1 3 can be estimated to be These uncertainties are several 
orders of magnitude higher than those of the constants B0 determined f rom the 
microwave or high resolution infrared spectra. As a consequence also our knowledge 
of the geometries of simple symmetric top molecules is much less accurate than for 
linear molecules. 

Recently another method was suggested2 for accurate determination of A0. This 
method requires the data on higher overtones and the uncertainty of the constant A0 

determined in this way can be estimated to be «0-01%. However this method thus 
far has not been applied in practice. O n the other hand recently several papers 
a p p e a r e d 5 - 8 , where the constant A0 was determined with the precision «0-001% 
comparable with the precision obtained for the constants B0 . In these papers the con-
stants A0 were determined f rom the differences between the frequencies of allowed 
and forbidden transitions terminating on the same upper state energy level, i.e. 
f rom the ground state differences in K. This method requires the knowledge of fre-
quencies of forbidden transitions with Ak ^ 0, ± 1. Since this method gives the 
most accurate values of the constants A0, we thought that it would be useful to de-
termine the conditions necessary for observation of forbidden transitions. There are 
two possible approaches to this problem. The first, more rigorous would be the deriva-
tion of complete expressions for intensities of forbidden transitions using the per-
turbat ion method. In the second, simpler approach which was actually used in this 
paper, it is assumed that contribution of the nonresonant interactions to the intensity 
of forbidden transition is negligible and that observation of forbidden transition 
is caused by dominant interaction between the states having nearly equal energies. 

It was demonstrated on several examples that application of the conditions neces-
sary for observation of forbidden transitions which were derived in this paper is 
very easy requiring in fact only simple algebra and it is believed that these conditions 
could serve as a useful guide in determining whether the search for forbidden transi-
tions in measured bands would be successful or not . 
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APPENDIX I 

Allowed transi t ion i f rom the ground vibrational state must obey the relations: 

Groups I: 

(Gv)j - AA-j = t,n (Al) 

Groups II: 

(Gv); - A*j(l 4- n) = n( 1 + 2ri) (A2) 

All groups: 

Ak{= 0 or 1 or - 1 . (A3) 

Since minimal n is equal to 3 (Groups I) or 2 (Groups II) there are only two possibilities fo r given 
(G v) j : a) Nei ther one of the allowed Aki satisfies the condi t ion ( A l or A2) and transi t ion is 
forbidden; b) Only one of the allowed AAr; (A3) satisfies the condit ion (Al or A2). Then apparent ly 
the value of (Gv) ; determines the values AAris t r 

APPENDIX II 

The following statement will be proved: If opera tor connect ing the states S[, S2 is diagonal 
in k then !:'[ = k2 ( Fig. 2). 

Proof for groups I: 

(Gpl - k\ + k2 = ttn , (BJ) 

(G;) 2 - k'2 + k'i = t2n , (B2) 

(Gyh ~ (0;)2 = tzn , (B3) 

Then: (k[ - k'[) - (k'2 - k2) = pn , (B4) 

where p — ti — + t2 is integer or zero. Minimal value of n is equal to 3. Since transit ions 
S'{ i , 5 \ ->S'2 are allowed 

\ k \ - k ' [ \ ^ l , \k'2-k"2\<\. (B5) 

The Eq. (B4) can be obeyed only for p = 0 and since k\ = k'2 also k'[ must be equal to k2 q.e.d. 

Proof for groups II: 

(Gv)i ~ (k[ - k'[) (1 + n) = n( 1 + 2tx) , (B6) 

(G;)2 - (k2 - k"2) (1 + n) = n( 1 + 212) , (B7) 

(G;) , - (G;) 2 = 2 / 3 « , (55) 

Then: (k[ - A:?) - - = 2n/( / 3 — / j + / 2 ) (1 + n) . (59) 

Right-hand side of Eq. (B9) must be integer and then (t3 — t{ + ' 2 ) / ( l + «) must be integer 
let us say k. Since minimal n is equal to 2 and again |(k'^ — k'[)\ ^ 1, |(k2 — k2)\ ^ 1, in the 
same way as for groups I it can be proved that k'{ = k2. 

Since k'{ h k2 is necessary condi t ion for application of Eq. (5) all operators diagonal in k 
can be excluded f r o m consideration for the purposes of this paper . 
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